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Abstract: We reviewed research on wildlife overpasses in the context of their genetic effectiveness to provide

connectivity between population patches that have been isolated by road construction. The potential ecological

consequences of such habitat fragmentation include reduction of gene flow between subpopulations and

hence an increase in genetic differentiation and a decrease in genetic diversity. Among the solutions to

provide connectivity between patches isolated by roads, wildlife overpasses are one of the most expensive

alternatives. Despite the high costs associated with their construction, most of the studies assessing their use by

wildlife remain observational, reporting evidence for passage use but few data on the number of individual

crossings. Moreover, the use itself of wildlife overpasses does not appear sufficient to assess their effectiveness

from a genetic viewpoint because a minimum number of individuals is required to assure gene flow between

population patches and because the spatiotemporal dimension of individual movements and demographic

parameters of subpopulations must be considered. So far, there is no evidence that wildlife overpasses do

or do not efficiently address genetic issues. This lack of data is probably due to the fact that few mitigation

efforts have implemented monitoring programs that incorporate sufficient experimental designs into pre- and

postconstruction evaluation. To assess the genetic effectiveness of wildlife overpasses, long-term monitoring

programs, including fieldwork and genetic analyses, are needed.
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Capacidad de los Pasos Elevados para Vida Silvestre para Proporcionar Conectividad y Prevenir el Aislamiento
Genético

Resumen: Revisamos la investigación sobre pasos elevados para vida silvestre en el contexto de su efectivi-

dad genética para proporcionar conectividad entre poblaciones que han sido aisladas por la construcción de

caminos. Las potenciales consecuencias ecológicas de tal fragmentación de hábitat incluyen la reducción del

flujo genético entre poblaciones y, por lo tanto, un incremento en la diferenciación genética y un decremento

en la diversidad genética. Entre las soluciones para proporcionar conectividad entre fragmentos aislados por

caminos, los pasos elevados para vida silvestre son una de las alternativas más costosas. No obstante los

altos costos asociados con su construcción, la mayoŕıa de los estudios que evalúan su uso por vida silvestre

son de observación, registrando evidencia del uso de los pasos pero con datos escasos sobre el número de

cruces individuales. Más aun, el uso mismo de los pasos elevados para vida silvestre parece insuficiente

para evaluar su efectividad desde un punto de vista genético porque se requiere de un número mı́nimo

de individuos para asegurar el flujo génico entre poblaciones y porque se deben considerar la dimensión es-

paciotemporal de los movimientos de individuos y los parámetros demográficos de las subpoblaciones. Hasta

el momento, no hay evidencia de que los pasos elevados para vida silvestres atienden o no atienden los aspec-

tos genéticos eficientemente. Esta carencia de datos se debe probablemente al hecho de que pocos esfuerzos de

mitigación han implementado programas de monitoreo que incorporen suficientes diseños experimentales

en la evaluación pre y post construcción. Para evaluar la efectividad genética de los pasos elevados para
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vida silvestre, se requieren programas de monitoreo a largo plazo, que incluyan trabajo de campo y análisis

genéticos.

Palabras Clave: aislamiento genético, conectividad, fragmentación, pasos elevados para vida silvestre, verte-
brados

Introduction

Roads are widely accepted to be a source of habitat frag-
mentation (Reed et al. 1996; Fleury & Brown 1997; For-
man & Alexander 1998). The evaluation of direct and in-
direct consequences of habitat fragmentation on wildlife
is profoundly complex and depends on both the intrinsic
eco-ethological characteristics of target species and the
features of the matrix surrounding fragments, which may
act as a source area for species adapted to the matrix itself
(Janzen 1986).

Conservation biology theory suggests that construc-
tion of linkage structures for wildlife between isolated
habitat patches may increase or at least maintain levels
of interpatch dispersal, thus maintaining gene flow and
sustaining population viability of target species (Koza-
kiewicz 1993; Forman & Alexander 1998). For this pur-
pose, crossing structures for wildlife have been incorpo-
rated into road-construction and -improvement projects
(Clevenger & Waltho 2005). Wildlife overpasses are ex-
pected to provide habitat connectivity, generally defined
as ‘‘the degree to which the landscape facilitates or im-
pedes movement among resource patches’’ (Taylor et al.
1993). The idea of such wildlife passages is relatively
new, and a variety of different terms are used to define
them (see Keller & Pfister 1997). Iuell et al. (2003) pro-
pose a distinction between wildlife overpasses and land-
scape overpasses, mainly based on width of the structure,
which reflects different levels of connection (population
and landscape, respectively).

Because the aim of these structures, however, is to
provide wildlife crossing, herein we define wildlife over-

passes (hereafter overpasses) as all bridge-like structures
of whatever size, designed for use by fauna or, at the most,
for dual use by farm vehicles and wildlife, and planted
with grass, shrubs, or trees. Overpasses are far more
common on roads than other linear infrastructures (e.g.,
railway lines), and although information about them is
available (especially concerning construction technique,
see Putman et al. [2004] for a review), the literature lacks
information about their genetic effectiveness. From a ge-
netic viewpoint, effectiveness may be defined as the abil-
ity of overpasses to prevent isolation between otherwise
disjunct subpopulations.

We sought to understand whether overpasses might
effectively provide connectivity and ensure genetic ex-
change within vertebrate populations that have been
fragmented by road construction. (We define population

as a group of interbreeding individuals living in the same
area at the same time; subpopulations occur after the geo-
graphical subdivision of a population as a consequence of
environmental or anthropogenic constraints.) We posed
the following questions: Are wildlife passages necessary
to provide genetic connectivity between subpopulations
(namely, do roads act as genetic barriers for wildlife)?
If roads do act as barriers, can overpasses be used to
improve connectivity between subpopulations (i.e., Are
overpasses used by wildlife)? Provided that overpasses
are used by wildlife, can they effectively ensure genetic
exchange? To address these questions, we posed the fol-
lowing hypotheses: if roads act as genetic barriers, they
affect the genetic structure of disjunct wildlife subpopu-
lations; if overpasses provide subpopulation connection
through individual crossings, overpasses increase or at
least maintain interpatch dispersal rate; the use of over-
passes is insufficient to prevent the genetic decline and
isolation of subpopulations because a minimum number
of individuals is required to move between patches to
assure gene flow.

Roads as Genetic Barriers for Wildlife

Roads have a broad spectrum of ecological effects on
wildlife populations, both direct and indirect (Forman &
Alexander 1998; Trombulak & Frissel 2000; Iuell et al.
2003). They facilitate animal–vehicle collisions; decrease
reproductive success (e.g., litter failure; Bjurlin & Cypher
2003); cause disturbance and pollution (Iuell et al. 2003);
constrain movement and distribution of species (Clarke
et al. 1998; Alexander & Waters 2000; Lodé 2000; Yale
Conrey & Mills 2001; Proctor 2003; J

↪
edrzejewski et al.

2004; McDonald & St.Clair 2004; Whittington et al. 2005;
Olsson & Widen 2008; Shepard et al. 2008); decrease
colonization rate; increase extinction rate (Mader 1984);
and change population density (Bjurlin & Cypher 2003),
biodiversity (Gutzwiller & Barrow 2003; Chen & Roberts
2008), and prey availability (Bjurlin & Cypher 2003).

Genetic Consequences of Road Construction

The evidence that roads cause detrimental effects on
habitat persistence and animal life-history traits, ranging
movements, and density variations appears overwhelm-
ing. Nevertheless, one of the most severe consequences
of habitat loss due to road construction is thought to be
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the creation of isolated pockets of habitat that cannot sup-
port viable populations in the long term (Fahrig 2003). Re-
ductions in the range of species may decrease probability
of their successful movement between habitat patches,
which affects gene flow, a complex process influenced
by several intrinsic (e.g., dispersal ability) and extrinsic
(e.g., landscape) factors (Burgman & Lindenmayer 1998).
Genetic theory suggests that the reduction of gene flow
between subpopulations may lead to greater inbreeding
and loss of genetic diversity within fragments, the raw
material that allows populations to evolve in response
to environmental changes (Wright 1943; Frankham et al.
2002).

Although biological extinctions result from the com-
bination of deterministic (e.g., habitat loss, overexploita-
tion) and stochastic (demographic, environmental, and
catastrophic) factors, loss of genetic diversity is thought
to contribute to extinction risk (Bascompte & Solé 1996;
Forman & Alexander 1998). Following genetic bottle-
necks, populations may experience loss of rare alleles and
a diminution of heterozygosity through genetic drift and
inbreeding. These processes contribute to the erosion of
genetic diversity and can lead to fitness reduction (Reed &
Frankham 2003). The risk of genetic erosion is highest in
small, isolated populations because of increased random
genetic drift, elevated inbreeding, and reduced interpop-
ulation gene exchange (Randi 1993; Hedrick 2001).

Several examples illustrate the link between genetic di-
versity and the fitness of individuals or populations (e.g.,
Frankham et al. 2002; Zachos et al. 2007 for red deer
[Cervus elaphus]). Therefore, “continued habitat frag-
mentation can be expected to fuel the ongoing global
extinction” (Reed 2004). Nevertheless, the link between
genetic connectivity and extinction in nature remains
largely a matter of debate and conjecture, rather than an
empirical truth. As a result the investigation of genetic
consequences due to road construction is of great im-
portance in the light of conservation strategies to avoid
inbreeding and maintain genetic diversity especially in
threatened species (O’Grady et al. 2006).

Evidence of Roads as Genetic Barriers

The effects of fragmentation are influenced by disper-
sal ability of the species and associated migration rates
between remaining habitat fragments (Frankham et al.
2002). Less vagile species are expected to be more sub-
ject to genetic issues. Research on the common frog
(Rana temporaria) and desert tortoise (Gopherus agas-

sizii) shows the role of barriers to gene flow played by
motorways (Reh & Seitz 1990; Edwards et al. 2004). In the
Netherlands, roads appear to play a major role as gene-
flow barriers for moor frog (Rana arvalis) populations
(Arens et al. 2007). Noël et al. (2007) indicate that allelic
richness and heterozygosity are lower in urban popu-

lations of red-backed salamander (Plethodon cinereus).
Exact differentiation tests and pairwise FST show that
populations of the salamander in fragmented habitats are
genetically differentiated, whereas populations in contin-
uous habitats are genetically homogeneous.

The effect of major roads on population genetic struc-
ture has been studied for small- to large-sized mammals
as well. Bank vole (Myodes glareolus) populations sepa-
rated by a motorway show clear genetic subdivision (Ger-
lach & Musolf 2000). Pertoldi et al. (2001) used hyper-
variable minisatellite DNA to screen the genetic variation
in 5 populations of the Eurasian badger (Meles meles)
in Denmark. They found low genetic variability within
populations, likely related to fragmentation of the Dan-
ish landscape, which reduces effective population size of
local populations and gene flow between different sub-
populations. This assumption has been upheld by van de
Zande et al. (2007).

In a study of roe deer (Capreolus capreolus), Coulon et
al. (2004)—using a direct quantitative approach—show
that female gene flow is linked to forested areas. This
seems to suggest that fragmentation of woodlands (e.g.,
due to road construction) may alter landscape connec-
tivity, resulting in some change in gene flow. Later ob-
servations of genetic structure of a roe deer population
inhabiting a fragmented landscape provide empirical ev-
idence of landscape features (including a highway) act-
ing as moderators of gene flow (Coulon et al. 2006).
Kuehn et al. (2007) found that transportation infrastruc-
tures influence genetic divergence of roe deer, but not
genetic diversity. The development of road networks in
southern Kantoh (Honshu, Japan) may represent a co-
factor in interruption of gene flow in Japanese sika deer
(Cervus nippon), which is leading to different spatial ge-
netic structures (Yuasa et al. 2007). Hartl (1998) reports
examples that suggest genetic separation in red deer pop-
ulations due to fenced roads in Germany and France. In
Scottish Highland red deer, roads represent a cofactor
for gene-flow alteration, even though their role as a ge-
netic barrier is secondary to that of sea lochs and moun-
tain slopes (Pérez-Espona et al. 2008). Gehle and Her-
zog (2003) in Germany found no significant difference
in the genetic structure of 2 red deer populations before
and after construction of a highway between the popu-
lations. Incorporating effects of human-made barriers in
isolation-by-distance regressions, Epps et al. (2005) found
evidence that fenced highways cause a rapid decrease of
gene flow between populations of desert bighorn sheep
(Ovis canadensis nelsonii) in southern California.

Dispersal and gene flow among bobcat (Lynx ru-

fus) and coyote (Canis latrans) populations inhabiting
habitats fragmented by the Ventura Highway (Southern
California) have been measured by Riley et al. (2006).
The authors found that migration rates for each species
were 1.3% and 3.3% per generation, respectively.
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Nevertheless, the genetic variation at the microsatellite
loci showed significant differentiation between subpopu-
lations on either side of the highway. They conclude that
relatively high rates of dispersal across the fenced free-
way do not translate into genetic connectivity (Strasburg
2006). Dixon et al. (2007) confirm lower heterozygos-
ity in smaller and less connected populations of Florida
black bears (Ursus americanus floridanus), a possible
consequence of habitat fragmentation and anthropogenic
barriers such as major roads that appear to limit their
dispersal capabilities, reducing gene flow among popu-
lations. Onorato et al. (2007) suggest that uncommon
events such as long-range dispersal are key events in de-
lineating the genetic structure and maintaining variation
within the black bear (Mexico-Texas metapopulation).
Nevertheless, Millions and Swanson (2007) found no evi-
dence of detrimental effects on genetic structure of bob-
cat populations (Michigan, U.S.A.) despite a high density
of roads.

On the whole, these studies suggest that anthro-
pogenic barriers may constitute a severe threat to per-
sistence of naturally fragmented populations and that
long-distance dispersal events, although typically rare, are
crucial to population spread and to maintenance of ge-
netic connectivity (Trakhtenbrot et al. 2005). Neverthe-
less, some controversial results persist. We suggest that
the role of roads as genetic barriers for several vertebrate
taxa may be particularly relevant in the presence of ex-
clusion fences, which effectively reduce animal–vehicle
collisions and have been adopted widely, for example, in
several European countries.

Use of Overpasses by Wildlife

Overpasses are largely a European phenomenon (Evink
2002), but they are also present in the United States,
Canada, and Australia. In Europe, as early as the 1960s,
overpasses were built in France, Luxembourg, and the
Netherlands, especially to look after the interests of
hunters who were concerned that roads might prevent
deer from moving from one area to another (Bekker 1998;
Folkeson 2004). France was the first country to adopt
such crossing structures, and 125 small overpasses have
been constructed so far. (Results of research suggest that
use of multiple, smaller overpasses is more effective than
use of one large overpass [Bank et al. 2002].) Germany
has more than 30 overpasses (most are dual use) and
almost the same number are being constructed or are
planned. Switzerland has more than 20 overpasses (Bank
et al. 2002). In the Netherlands 4 hourglass and straight-
shaped overpasses have been built and some others have
been modified by covering one lane with vegetation and
using fencing to direct animals toward it (Bank et al.
2002). There are also overpasses in Spain, Italy, Croatia,

Austria, Hungary, Czech Republic, Luxembourg, Sweden,
and Norway (Santolini et al. 1997; Stahan 1998; Keller et
al. 2003; Iuell et al. 2003; Mata et al. 2003; Folkeson
2004; Kusak et al. 2008). The first overpass constructed
in the United States was completed in 2000 in Florida.
Other overpasses have been constructed in Hawaii, New
Jersey, and Utah and are being planned in Montana and
Connecticut (Bank et al. 2002). In Canada there are 2
overpasses in Banff National Park (Alberta) (Evink 2002).
Australia also has overpasses (Bond & Jones 2008).

Evidence of Overpasses Use

The use of overpasses by wildlife appears to be affected
by several factors such as locations in relation to nat-
ural paths, size, design, visual appearance, and woody
cover at the entrances (Putman 1997; Bekker 1998; Ng
et al. 2004). Despite the role of overpasses in assisting the
movement of species being widely accepted from a theo-
retical viewpoint, such assertions are seldom supported
by empirical evidence. Evidence of the effectiveness of
wildlife crossings derived from long-term monitoring pro-
grams is currently limited for most species (Clevenger
& Waltho 2005; Mata et al. 2005; Bond & Jones 2008).
Moreover, the use of underpasses (and other crossing
structures such as culverts) appears to be more studied
than that of overpasses (e.g., Ng et al. 2004; Ascensão &
Mira 2007; Bond & Jones 2008; Braden et al. 2008).

In France Ballon (1985, in van Wieren & Worm 2001)
found evidence that roe deer, wild boar (Sus scrofa),
Eurasian badger, and red fox (Vulpes vulpes) use 2 over-
passes, even though the crossing frequency was limited
because of joint use by humans and small size of the pas-
sage. Again in France Vassant and Brandt (1998) found
evidence of use of a wildlife overpass by roe deer, red
deer, and wild boar.

In Germany overpasses are used by the red fox, Eu-
ropean hare (Lepus europaeus), and domestic cat (Felis

catus), whereas Swiss overpasses are well used by mam-
mals such as the roe deer, Eurasian badger, wild boar,
stone marten (Martes martes), red fox, and European
hare (De Vries 1994, in van Wieren & Worm 2001).

Other studies, conducted in Switzerland through use of
infrared video camera technology, show that overpasses
are effective for a wide variety of animals including inver-
tebrates. Specifically, structures at least 60 m wide are
more effective than overpasses narrower than 50 m, es-
pecially for larger mammals (Evink 2002). In Switzerland
viaducts and overpasses are the most effective structures
for the widest range of species (Bank et al. 2002).

In the Netherlands an overpass is well used by the Euro-
pean hedgehog (Erinaceus europaeus), red squirrel (Sci-

urus vulgaris), European rabbit (Oryctolagus cunicu-

lus), European hare, red fox, stone marten, and roe deer
(Nieuwenhuizen & van Apeldoorn 1994, in van Wieren
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& Worm 2001). Van Wieren and Worm (2001) investi-
gated the use of an overpass across a motorway in central
Netherlands, comparing data from 1989 and 1994/1995.
In 1989, shortly after being built, the crossing structure
was frequently used by the red deer, roe deer, wild
boar, and red fox. In 1994/1995, 3 other large species
were recorded: fallow deer (Dama dama), Eurasian bad-
ger, and Highland cattle (Bos taurus). The authors sug-
gest a close relation between the frequency of passages
and mating season. Small mammals including the wood
mouse (Apodemus sylvaticus), common vole (Microtus

arvalis), and common shrew (Sorex araneus) also used
the structure.

In northwestern Spain underpasses and overpasses ap-
pear to be the most used structures, although with dif-
ferent levels of use according to species. Anurans and
ophidians tend to avoid overpasses; lacertids, small mam-
mals, and red foxes generally use all passage types; red
deer use wide passages both under or above the road;
roe deer only use underpasses; and wild boar mainly use
overpasses (Mata et al. 2003, 2005, 2007).

Moose (Alces alces) and roe deer in Sweden use an
overpass mostly during nocturnal hours, and the fre-
quency with which ungulates use this particular over-
pass declines with increased traffic volume (Olsson et al.
2008). Despite construction of crossing structures, ex-
clusion fencing along highways may have a negative im-
pact on gene flow between moose populations (Olsson
& Widen 2008).

Kusak et al. (2008) showed that the ratio of large mam-
mals crossing the highway in Gorski Kotar (Croatia) via
wide overpasses (100 m and wider) is 3 to 6 times higher
than crossings through narrow underpasses.

In the United States there is little information about
the use of overpasses because crossing structures are
relatively new (Evink 2002).

In Canada a research project launched in 1996 showed
that crossing structures not including overpasses are ef-
fective for elk, deer (Odocoileus spp.), and coyotes, but
not for large carnivores, such as wolves (Canis lupus),
cougars (Puma concolor), black bears (Ursus ameri-

canus), and grizzly bears (Ursus arctos). This led to the
construction of 2 overpasses (Clevenger 1999) and sub-
sequent monitoring actions. So far, deer use the wildlife
overpasses 12 times more than the underpasses, elk
use the overpasses 3 times more than underpasses, and
moose use overpasses 6 times more (and only once used
the underpass). All carnivores except cougars use both
overpasses. Wolves used the 2 overpasses as a group (2–
7 individuals) 5 times. In the first 3 years after being
built, the 2 overpasses showed an increase in use, partic-
ularly by large carnivores such as grizzly bears, wolves,
and cougars (Evink 2002). Although the results of some
studies suggest that ungulates seem to prefer overpasses,
where overpasses and underpasses are available close to
each other, results of other studies suggest that the use

of overpasses by red deer, roe deer, and fallow deer is
lower than that of underpasses (Staines et al. 2001).

Overpass Effectiveness

Despite the abundance of literature assessing the use of
overpasses by wildlife, there seems to be a lack of eval-
uation of dispersal rates before and after construction.
This makes their effectiveness at providing interpatch
movements difficult to assess. Some evidence for less-
ening of animal–vehicle collisions after the construction
of overpasses suggests they may be capable of increasing
dispersal rates and providing genetic connectivity. Never-
theless, the diminution of animal–vehicle collisions alone
is not enough to prove the increase of dispersal rates.
Olsson and Widen (2008) show that rather than favoring
dispersal rates, overpasses seem to mitigate the negative
effect of exclusion fencing along highways. Fences, on
the other hand, represent a tool “sculpted” to funnel in-
dividuals belonging to certain taxa (e.g., deer) toward
overpasses (Putman 1997). Sometimes overpasses may
also represent ecological traps for some taxa because in-
dividuals may face dim prospects as they arrive in unsuit-
able habitats. Consequently, overpasses may reduce gene
flow and lower migration rates, relative to what would
happen in their absence.

Overpasses and Genetic Connectivity

Animal use of an overpass in itself may not be sufficient to
determine that an overpass will guarantee the survival of
an entire population (Bekker 1998) because we expect
that a species-specific minimum number of individuals is
required to move between patches to assure gene flow.
Nevertheless, most studies have been observational, re-
porting evidence for passage use. Few data on the num-
ber of individual crossings, before or after construction,
are available. Most claims about the genetic effectiveness
of overpasses are based on indirect assumptions. Given
that habitat connectivity is vital for maintaining genetic
flow between populations, results suggests that cross-
highway structures facilitate wildlife attempting to cross
major roads and thus may represent a useful tool to avoid
genetic issues. For example, Olsson et al. (2008) suggest
that 5–7 moose/year using an overpass is enough to main-
tain gene flow between subpopulations.

Modeling Gene Flow

An indirect (deterministic) approach to assess whether
overpasses prevent genetic isolation is to compare the
observed rate of crossings and the number of individu-
als theoretically required to maintain genetic diversity.
One migrant individual per generation might be enough
to prevent inbreeding depression (Wright 1931; Wang
2004a). The “one migrant per generation” rule, however,
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may be sufficient in many scenarios, and for fluctuating
populations or those violating the assumptions of Hardy–
Weinberg equilibrium, up to 10 animals may be needed
to maintain current levels of genetic diversity (Mills &
Allendorf 1996; Vucetich & Waite 2000).

Nevertheless, the minimum number of individuals re-
quired to assure the maintenance of gene flow is ex-
pected to depend on the species (Whitlock & McCauley
1999), the size of the recipient subpopulation (Vucetich
& Waite 2001), and, therefore, on census size of subpopu-
lations (Toro & Caballero 2005). Law and Linklater (2007)
contend that the sex ratio within populations affects im-
mediate survival and reproductive performance of indi-
viduals, and the rate at which their alleles are transferred
and persist in the target subpopulation. Moreover, age
structure of populations, survival of migrants, and level
of gene flow within the subpopulation where migrants
originate (Couvet 2002; Wang 2004a) must be taken into
account. In addition, the spatial and temporal dimension
of individual movements should be considered. That is,
the effectiveness of an overpass to ensure genetic connec-
tivity would be compromised if individuals from different
subpopulations did not meet in the same area during the
same mating season (e.g., overpass could be used only
for reaching feeding sites outside the breeding period).
Hence, an integrated evaluation of crossing rates and spa-
tiotemporal behavior of the study species and estimates
of population parameters (e.g., size, sex–age structure),
intrinsic migratory rates, and survival of migrants are
needed to understand the potential of the overpass to
avoid genetic issues. “For a given population, different
models may be developed and used for its genetic man-
agement, depending on the details of the information
being observed and recorded for the population” (Wang
2004b).

Conclusions

Even though anthropogenic infrastructures such as roads
are commonly thought to limit genetic exchange be-
tween fragmented patches, few studies have demon-
strated clearly that major roads are acting as barriers to
gene flow among subpopulations (Strasburg 2006). Even
fewer studies have investigated the extent to which over-
passes are effectively used by wildlife, and no study has
investigated the genetic effectiveness of overpasses. This
situation is probably due to the fact that few mitigation
programs have implemented monitoring programs that
incorporate sufficient experimental design into pre- and
postconstruction evaluation. “Although limited move-
ment across roads may be sufficient to insure genetic
mixing, it may not prevent population isolation and de-
cline. Only subsequent monitoring will determine if the
mitigation was effective. If not, reconsideration of addi-
tional crossings is warranted” (Bissonette & Adair 2008).

Moreover, the success of monitoring programs aimed at
single target species may fail to evaluate the barrier ef-
fects on other nontarget species (Clevenger & Waltho
2005).

Considering the high costs associated with construc-
tion of wildlife overpasses and the lack of information
on their effectiveness, there is an urgent need to study
the ability of such structures to prevent genetic isola-
tion. Rather than adopting a deterministic approach, it
would be best to adopt an adaptive approach with which
to compare the situation before and after overpass con-
struction. For this task, long-term monitoring projects,
including fieldwork and genetic analyses, are needed.

Whenever possible we recommend the following 3
types of investigations. First, investigate the genetic di-
versity of disjunct subpopulations and the dispersal rate
of individuals before overpass construction (when no ef-
fect on genetic structure of populations can be detected,
overpasses might not even be needed in the first place).
Details on analysis of molecular data can be found in
Pritchard et al. (2000), Corander et al. (2003), and Mank
and Avise (2004).

Second, investigate the use of overpasses by different
wildlife species from a quantitative point of view, taking
into consideration the spatiotemporal scale (e.g., distribu-
tion and dispersal rate before, during, and after the mat-
ing season). We recommend global positioning satellite
tracking, photographic monitoring, pellet-transect mon-
itoring, and hair sampling. (For an extensive review of
these techniques, see Goosem [2005].) These studies
should start after the habituation period, which may take
several years depending on the species, and be carried
out on an annual basis.

Third, investigate genetic diversity of the reconnected
subpopulations a few years after construction of an over-
pass. This adaptive approach requires taking into con-
sideration variables such as characteristics of the bridge
itself (e.g., size, access to the structure, type of surface,
presence of farm tracks, and vegetation distribution, den-
sity, and structure) and of the matrix surrounding the
structure (e.g., size of the road, traffic load, presence and
size of exclusion fences, human disturbance, presence
of other roads nearby, density and sex-age structure of
animal populations, and habitat characteristics on either
side of the bridge because overpasses could be ecological
traps for some taxa). To our knowledge no study has eval-
uated the use of overpasses in relation to all the above
variables, a lack that might lead to uncertain results about
their effectiveness from a genetic viewpoint (Clevenger
& Waltho 2005).

We suggest that the effectiveness of overpasses as tools
to provide connectivity and prevent genetic isolation of
subpopulations of several vertebrate taxa may be linked
to the presence of fences, which simultaneously act as
barriers to direct access to roads and facilitate access to
crossing structures.
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Finally, the choice to build overpasses across roads (or
modifying already existing structures) does not entirely
rely on genetic considerations (population level). Con-
sidering benefits to the individual, overpasses should be
used whenever possible because “they are less confin-
ing, quieter, maintain ambient conditions of rainfall, light
and temperature, and can serve both as passageways for
wildlife and intermediate habitat for small animals such
as reptiles, amphibians and small animals” (Jackson &
Curtice 1998). Furthermore, overpasses can act as tools
to prevent wildlife–vehicle collisions and could reduce
potential stress when crossing traffic barriers. Improving
the quality of life of individuals could result overall in
higher population viability, although the effect may be
difficult to quantify. The definition of overpass effective-
ness therefore changes depending on the goal (Clevenger
1999). From a genetic perspective there is still much to
be done.
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